Expressing Opinion on Political Events

Textual, Syntactic and Lexical Analysis

Authors

  • Ana Zwitter Vitez University of Ljubljana, Faculty of Arts, Slovenia; Jožef Stefan Institute, Ljubljana, Slovenia

DOI:

https://doi.org/10.4312/vestnik.13.91-108

Keywords:

expression of opinion, social media, text analysis, syntactic analysis, lexical analysis

Abstract

Users of forums, social networks and news portals now have the opportunity to publicly express their opinions on current political events, social issues, or their everyday lives. The analysis of opinion expression, which primarily represented a research topic in the field of language learning, has now become an important research challenge in the field of computational linguistics, which provides relevant solutions for various companies and organizations. The aim of this article is to analyse messages by which users of the social network Twitter reacted to an incident in which Emmanuel Macron was slapped in the face by a man as he went out to meet the public. We analysed the tweets that express agreement, disagreement and a neutral attitude towards the action. The analysis includes 80 tweets and refers to the textual, syntactic and lexical levels. The results show that tweets expressing disagreement have a typical declarative or exclamatory form, simple sentence structure and include explicit vocabulary expressing the author’s opinion (shameful, disrespectful). Tweets demonstrating agreement are more likely to have an exclamatory form, simple sentence structure and include an explicit term (well done, deserve a slap). Opinion-neutral tweets, on the other hand, are more likely to be formulated as declarative sentences with complex sentence structure and do not include an explicit term expressing the author’s opinion. The presented method is established on basic grammatical criteria (number of sentences, sentence structure, sentence form, keywords), which can also be applied to computational analysis of large collections of texts. In the future, the presented model could be applied to investigate various political, societal or healthcare challenges (elections, corruption or pandemic issues).

Downloads

Download data is not yet available.

References

SOURCE

Chaîne d’info BFM. 20 juin 2021.

https://twitter.com/BFMTV/status/1402244842500071427.

*******

BIBLIOGRAPHIE

ANSCOMBRE, Jean-Claude/Oswald DUCROT (1976) L’argumentation dans la langue. Langages 41, 5–27.

AUSTIN, John Langshaw (1962) How to do things with words : The William James Lectures delivered at Harvard University in 1955. Oxford : Clarendon Press.

BUTLER, Judith (1997) The psychic life of power : Theories in subjection. Stanford : Stanford University press.

DUCROT, Oswald (1972) Dire et ne pas dire. Principes de sémantique linguistique, Paris : Herman et Cie.

FARZINDAR, Atefeh/Mathieu ROCHE (2013) Les défis du traitement automatique du langage pour l’analyse des réseaux sociaux. Revue TAL – Traitement Automatique des langues 54 (3), 7–16.

Français facile. Le 20 juin 2021. https://www.francaisfacile.com/exercices/exercice-francais-2/exercice-francais-12640.php.

France Soir. Le 4 juin 2021. https://www.francesoir.fr/societe-sante/mails-fauci-afp-savait-originevirus.

GOMEZ SANCHEZ, Ingrid (2018) L’expression de l’affect dans les échanges des apprenants de FLE. Revista de linguas modernas 28, 197–207.

HAVERKATE, Henk (1990) A speech act analysis of irony. Journal of Pragmatics 14 (1), 77–109.

JALAM, Radwan/Jean-Hugues CHAUCHAT (2002) Pourquoi les n-grammes permettent de classer des textes? Recherche de mots-clefs pertinents à l’aide des n-grammes caractéristiques. A. Morin/P. Sébillot (éds.), JADT Journées internationales d’Analyse statistique des Données Textuelles. Rennes : INRIA, 1–10.

Nouvel Edito B1. Le 20 mai 2021. https://didierfle-edito.com/exercices/b1/unite-4-b1/lexpression-de-lopinion-indicatif-ou-subjonctif/.

PANCKHURST, Rachel (2006) Le discours électronique médié : bilan et perspectives. Lire, Écrire, Communiquer et Apprendre avec Internet 1, 345–366.

PANG, Bo/Lillian LEE (2008) Opinion Mining and Sentiment Analysis. Foundations and Trends® in Information Retrieval 1–2, 1–135.

POPIČ, Damjan/Darja FIŠER (2018) (Ne)normativnost računalniško posredovane komunikacije v slovenščini : merilo vejice. D. Fišer (éd.), Viri, orodja in metode za analizo spletne slovenščine. Ljubljana : Znanstvena založba Filozofske fakultete, 140–159.

RETZINGER, Suzanne (1995) Identifying Shame and Anger in Discourse. American behavioral scientist 38 (8), 1104–1113.

RIEGEL, Martin/Jean-Christophe PELLAT/René RIOUL (1994) Grammaire méthodique du français. Paris : PUF.

SMAILOVIĆ, Jasmina/Miha GRČAR/Nada LAVRAČ/Martin ŽNIDARŠIČ (2014) Stream-based active learning for sentiment analysis in the financial domain. Information Sciences 285, 181–203.

SPERIOSU, Michael/Nikita SUDAN/Sid UPADHYAY (2011) Twitter polarity classification with label propagation over lexical links and the follower graph. O. Abend (éd.), EMNLP '11 : Proceedings of the First Workshop on Unsupervised Learning in NLP. Edinburgh : Association for Computational Linguistics, 53–63.

STEFANOWITSCH, Anatol (2004) Happiness in English and German: A metaphorical-pattern analysis. M. Achard/S. Kemmer (éds.), Language, culture and mind. Stanford : CSLI Publications, 137–149.

TEDESCHI, Antonio/Francesco BENEDETTO (2015) A cloud-based big data sentiment analysis application for enterprises' brand monitoring in social media streams. P. Sangregorio/A. L. Cologni/F. Previdi (éds.) 2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI). New Jersey : Institute of Electrical and Electronics Engineers,186–191.

WRIGHT, Alex (2009) Mining the Web for Feelings, Not Facts. New York Times (2009). 20 mai 2021. https://www.nytimes.com/2009/08/24/technology/internet/24emotion.html.

ZWITTER VITEZ, Ana (2020a) Le discours politique et l’expression de l’opinion sur Twitter : analyse syntaxique, lexicale et orthographique. Ars et humanitas 14 (1), 157–170.

ZWITTER VITEZ, Ana (2020b) La contribution de la linguistique dans l’analyse de la dynamique sociale : l’exemple des Gilets jaunes. I. Lazar/A. Panjek/J. Vinkler (éds.), Mikro in makro : pristopi in prispevki k humanističnim vedam ob dvajsetletnici UP Fakultete za humanistične študije. Koper : Založba Univerze na Primorskem, 509–52.

Published

27.12.2021

How to Cite

Zwitter Vitez, A. (2021). Expressing Opinion on Political Events: Textual, Syntactic and Lexical Analysis. Journal for Foreign Languages, 13(1), 91–108. https://doi.org/10.4312/vestnik.13.91-108

Issue

Section

Articles