The 8200 calBP climate event and the spread of the Neolithic in Eastern Europe

Marianna A. Kulkova 1, Andrey N. Mazurkevich 2, Ekaterina V. Dolbunova 2 and Vladimir M. Lozovsky 3
1 Herzen University, St. Petersburg, RU
kulkova@mail.ru
2 The State Hermitage Museum, St. Petersburg, RU
3 Institute of the History for Material Culture, St. Petersburg, RU

ABSTRACT – At 8200 calBP, the beginning of the Atlantic period, there was a drastic change from warm and humid climatic conditions to cold conditions. The abrupt cooling at 8200 calBP has been documented in different parts of Europe. In western, and some parts of southern, Europe, this event was a trigger for new forms of economy and migrations of groups of Neolithic farmers. This paper considers the different ways in which ceramic traditions developed in eastern Europe in the steppe, steppe-forest and forest zones as a result of the rapid climate changes at about 8200 calBP.

IZVLEČEK – V času okoli 8200 calBP, to je na začetku obdobja atlantika, je prišlo do korenite spremembe klime, od toplih in vlažnih pogojev do ohladitev. Nenadna ohladitev v času 8200 calBP je dokumentirana v različnih delih Evrope. V zahodni in v delu južne Evrope je dogodek sprožil nove oblike gospodarstev in preseljevanje skupin neolitskih poljedelcev. V članku razpravljamo o različnih oblikah razvoja keramičnih tradicij na stepskih, gozdno-stepskih in gozdnih območjih v vzhodni Evropi kot posledico hitre klimatske spremembe v času 8200 calBP.

KEY WORDS – rapid climate change; Neolithic; pottery; Eastern Europe

Introduction

Until now, the Holocene has been considered as an interstadial period, with stable climatic conditions. According to Richard Tipping et al. (2012) the old paradigm of slow, gradual change (Lamb 1977; 1995) has been replaced by one in which change can be described as abrupt, occurring over short time-scales of centuries or less, separated by comparatively long periods of quasi-stasis (Mayewski et al. 2004). The 8.2ka years event was part of a climatic cooling period from c. 8600 to 8000 calBP (Rohling, Pälike 2005; Thomas et al. 2007; Walker et al. 2012) that interrupted the long-term trend of rising early-Holocene temperatures. The event lasted approx. 160 years (Daley et al. 2011; Kobashi et al. 2007). It has been detected as a marked cold snap in multiple paleoclimatic records from the Greenland ice cores and a variety of sedimentary records, especially in northern Europe (Alley, Ágústsdóttir 2005; Seppä et al. 2007; Thomas et al. 2007; Walker et al. 2012). The abrupt cooling at 8200 calBP has also been documented in different parts of Europe. This evidence includes the stratigraphic record of lake drainage (Barber et al. 1999), reconstructions of sea level rises (Li et al. 2012; Tornqvist, Hijma 2012), and geochemical reconstructions of freshwater discharge from the Hudson Strait and northwest Labrador Sea (Carlson et al. 2009; Hoffman et al. 2012). The last global syntheses of proxy data around 8200 calBP were published recently (Wiersma, Renssen 2006; Morrill, Jacobsen 2005; Rohling, Pälike 2005; Morrill et al. 2013). There are fewer data available for Eastern Europe, and they are based mainly on data of pollen analysis. The high-resolution pollen diagram focusing on the 8400–7700 calBP interval in-
dicates that the taxa with the most marked decline were Alnus, Corylus and Ulmus. In deposits from lakes located in Finland, the pollen analysis also registered abrupt climatic cooling at 8200 calBP (Sar- maja-Korjonen, Seppä 2007; Seppä 2004; Veski et al. 2004). The end of this event is reflected as a sudden change between c. 8075 calBP and c. 8050 calBP, when the pollen proportions of Alnus (10%), Corylus (2%) and Ulmus (1.5%) increase to 13%, 4% and 2.5%, respectively. Some evidence for this event was obtained on the basis of geochemical analyses of lake deposits and radiocarbon date distributions for sites in the north-western part of Eastern Europe (Kulkova et al. 2015).

At the beginning of the Atlantic period, the warm and humid climatic conditions changed to cold conditions drastically at 8200 calBP. It was the first considerable cooling after the Younger Drias. The temperature fell to 0.5–1.5°C in Europe, Greenland, Northern America, Asia, Northern Africa and the eastern part of northern Atlantic Ocean (Seppä, Poska 2004; Rasmussen et al. 2006; Vinther et al. 2006; Morrill et al. 2013). According to the data of Ane Wiersma et al. (2006), the cooling was accompanied by dry climatic conditions. However, a dry climate prevailed in northern and southern Europe (Magny et al. 2003). The humid climate in this period has been registered in several places in the middle latitudes of Europe, approx. between 43° and 50° north.

One of the main factors in climatic change is variation in solar activity (Bond et al. 2001; van Geel et al. 2004). There is a wealth of empirical evidence to support this theory, mostly based on isotopic data. The model experiments of Hugues Goosse et al. (2002) showed that variations in solar radiation could cause variations in thermohaline convection in oceans, as well as the polar atmospheric flows in both hemispheres. These processes (Lamy et al. 2010; Magny et al. 2003; Mullins, Halfman 2001) weaken African and Asian monsoons and result in a fall in temperature and a thermal contrast between terrestrial and oceanic air masses. On the other hand, the increase and drift of Westerlies regulates the humidity balance in low and middle latitudes in response to changes in the thermal gradient between high and low latitudes. The territories affected by Westerlies are characterised by more humid conditions (Bush 2005).

The sensitivity of ecosystems to abrupt climate changes in the past has been considered by different scholars (Hofmann 2000; Birks, Ammann 2000; Dui- gan, Birks 2000; Williams et al. 2002; Baldia 2013). The climatic changes caused by the abrupt cold event, most notably the cooling in the Northern Hemisphere and an increase in aridity in the lower latitudes are thought to have affected human populations in many parts of Europe and beyond (cf. Binford 2001; Dincauze 2000; Kelly 1995). The coincidence in the timing of this hemispheric-scale abrupt climate change or a rapid climatic change (RCC) (Bond et al. 1997; Mayewski et al. 1997, 2004) with transformations in prehistoric societies and economies in north-western Europe has been considered elsewhere (Berger, Guillaume 2009; Berglund 2003; Turney et al. 2006; Karlen, Larsson 2007). The environmental changes were reflected in the records in various ways that are determined by such things as the severity of the effects of the changes on the ecosystem, the readiness of any given group to adapt, and the threat to group territory, as well as migrations, conflicts, and technological changes (see Manninen 2014). The demographic collapses caused by such crises and the following social and economic reorganisation can therefore be expected to be reflected in rapid changes in the record (Riede 2009).

The warm and humid climatic conditions at the beginning of the Holocene, the environmental changes, the increasing of availability and the diversity of food resources could have been factors in social transformation, such as an increase in population density (Adger et al. 2012; Gronenborn 2009; Munoz et al. 2010; Riede 2009; Robinson et al. 2013). One of these events was the development of Mesolithic societies, whereas the formation of Mesolithic groups occurred probably during a cold climatic period. The transition from the Paleolithic to Mesolithic attributed to the Younger Drias period resulted in the complication of social structures, the occupation of new territories and the diffusion of small, independent Mesolithic groups over considerable distances (Bell, Walker 2005; Bassetti et al. 2009). In western and some parts of southern Europe, the abrupt cold event at 8.2ka BP could have triggered new forms of economy, such as the Neolithic, and also triggered the migration of groups of Neolithic farmers (Berger, Guillaume 2009; Weninger et al. 2006; Budja 2007). In the steppe and forest zones of Eastern Europe, these processes are not so clearly manifested.

The 8200 calBP climate event and the Neolithic population dispersal

A warm and humid monsoon climate prevailed in North Africa at the beginning of the Holocene, favourable to savannah with numerous lakes. The co-
ooling and decreasing of African monsoons at 8200 calBP caused dry climatic conditions. Some authors (e.g., Brooks et al. 2005) suggest that this period was a key point in the development of cattle pastoralism in the Sahara. Increased aridity is believed to have played a key role in encouraging the integration of cattle herding with existing hunting and foraging systems (Holl 1998; Hassan 2002). The exploitation of mountain pastures for goat and sheep grazing (possibly developed first in western Asia) was a result of drier conditions in the foothills of Libya. In this period, the dispersal and isolation of different cultural groups occurred all across the Sahara. These groups migrated to unknown territories in search of water and pastures. Subsequently, settlements grew up around water basins (Brooks 2006). The earliest settlements in the southern part of Egypt consisted of small groups engaged in cattle husbandry and pottery making (Wendorf, Shild 1998). The 8200 calBP climate event resulted in economic developments such as the appearance of small cattle and the growth of settlements with numerous fires near large water basins.

According to Bernhard Weninger et al. (2006), the influence of the 8200 calBP event in Europe was greatest in Central Anatolia. The flourishing and well-established settlement at Catalhöyük-East was deserted quite abruptly around 8200 calBP. The site was reoccupied later, with a shift of the settlement by approx. 200m to a new position (Catalhöyük-West). This settlement shift marks the beginning of the Early Chalcolithic in Central Anatolia. The impact of climate event on prehistoric groups in Anatolia, Cyprus, Greece and Bulgaria has been considered by various authors (Staubwasser, Weiss 2006; Migowski et al. 2006; Weninger et al. 2006).

The 8200 calBP climate event was associated with the transition from the Pre-Pottery to the Pottery Neolithic era, which was marked by the collapse of the ‘ritual economy’ and agricultural PPN aggregation centres in the Levant (Budja 2007). As he noted, this climatic anomaly correlates chronologically with the process of the neolithisation in the Near East and south-eastern Europe. The collapse of the agricultural PPN aggregation centre in the Levant correlates with the cooling period and aridity. The initial agriculture in the Peloponnese and most of the Balkans predate the climate event at around 8150–7950 calBP, but the ‘Neolithic package’ (for more detail, see Cilingiroğlu 2005) seems to have crossed the Danube and entered the southernmost region of the Pannonian Plain after the major climate fluctuations, and remained there for centuries (Budja 2007. 196–197).

Archaeological data and palaeoecological records suggest that the Neolithic acculturation process of the Carpathian Basin took place between approximately 8450–7450 calBP (Sümegi et al. 1998; Banffy, Sümegi 2012). It was a period of various transformations in Neolithic society.

The spread of the Neolithic in Eastern Europe

The process of neolithisation in Eastern and South-eastern, Central and Western Europe differed significantly. While the ‘Neolithic package’ distribution, ‘agricultural frontiers’ spread and ‘demic diffusion’ (Zvelebil 1998; Özdoğan 2001; Cilingiroğlu 2005; Budja 2013) mark it in the latter, in Eastern Europe, the main marker of the Neolithic process was pottery appearance without any other Neolithic components. However, some different components of the Neolithic package have been found at the site Rakushechny Yar in the Low Don River region (9050–8450 calBP) (Belanovskaya et al. 2003) (Fig. 1). The earliest pottery and adobe architecture can be found in the Low Volga region (the Varfolomeevka site) (Yudin 2000). Also, the earliest pottery in this region appeared at sites in the Kairshak-Tenteksor group and Dzangar-Varfolomeevka (9050–8650 calBP), and the Elshanian group in the Middle Volga River region (9150–7950 calBP) (Vybornov et al. 2008a; 2008b; 2010).

The steppe and forest-steppe zones of Eastern Europe

Rakushechny Yar in the Low Don River region

One of crucial Early Neolithic sites in Eastern Europe, where almost all the components of Neolithic were found is at Rakushechny Yar (Belanovskaya 1995), located in the Lower Don River region (Fig. 1). Some types of pottery found at this site closely resemble ceramic types from other cultures of Eastern Europe. The artefact assemblage of this site is significant for understanding the process of neolithisation in the north-eastern Black Sea region. The radiocarbon dates, typological analogies of pottery, the specific bone industry, cattle husbandry, and adobe architecture reveal a similarity with Near Eastern sites, indicating an allochthonous character of the site (Belanovskaya, Timofeev 2003; Belanovskaya et al. 2003; Kotova 2002; Mazurkevich et al. 2012). Therefore, it should be considered a ‘primary’ centre for the development of some Neolithic ceramic
traditions in the Low Volga and Don regions, the Upper Volga region, and the Dnepr-Dvina region.

The pottery from the Rakushechy Yar site has different shapes with flat bottoms (Fig. 2). Silt clay from deep and shallow water areas of the Don River basin was used for ceramic moulding. According to the petrographic analysis (Mazurkevich et al. 2013) the ceramic paste consists of clay loam tempered with sand and grog (dried and ground clay). The coil technique with stretching of strips of clay was used to make some of the earliest types of ceramics. The surface of the pottery was smoothed after scratching, or polished and smoothed without scratching. This type of pottery was undecorated.

Another ceramic type from these cultural layers has decoration; the decorated fragments make up about 9% of the ceramic collection. A variety of ornamentation can be observed here: simple compositions consisting of triangular signs, I-shaped motifs made with the impression technique, combing incisions, lines and denticulated impressions made with the `rocking-chair' technique. Different types of raw clay deposits were used for making this type of pottery.

The radiocarbon dates on food crusts from the early types of pottery date this site to c. 8700–7840 calBP.

The Kairshak-Tenteksor and Dzgangar-Varfolomeevka groups in the Lower Volga River region

According to Alexander Vybornov et al. (2012), sites of Kairshak complex existed on the semi-desert northern coast of the Caspian Sea from c. 8600 calBP onward. The pottery is characterised by flat bottoms, incisions as pottery decorations (after Vybornov 2008a) (Fig. 3), and is made of clay mixed with silt and shell. The local Mesolithic stone industry that persisted during the Neolithic period is characterised by artefacts such as geometric microliths in the form of segments and parallelograms. These Neolithic sites present a local type of neolithisation.

On the north-west coast of the Caspian Sea, the earliest sites of the Dzhangar type (Tu-Buzgu-Huduk I site) were dated to the first half of the 8th millennium BP. The main innovation was the appearance of pottery (Fig. 3). The Kairshak and Dzhangar cultures influenced the development of the Orlovskaya cultural tradition in the Middle Volga River region around c. 8500–8400 calBP. The earliest Neolithic...
The 8200 calBP climate event and the spread of the Neolithic in Eastern Europe

ceramics from the Djangar-Varfolomeevka sites were made from silt clay with sand and organic inclusions. The pottery has a closed shape with flat walls and flat or roundish bottoms. The decoration in the upper part was made with triangular and oval pins; the motifs consist of horizontal rows and horizontal zigzags (Vasilieva, Vybornov 2013; Vybornov 2008b).

The Elshanian cultural group in the Middle Volga River basin
The earliest Neolithic sites with ‘Elshanian-type’ pottery are located between the steppe and forest steppe zones in the Middle Volga River basin (Fig. 1). The most important sites of the early stage are the Ivanovo site on the Samara River and the Chekalino on the Sok River (Vybornov 2011). The pottery was made of plastic clay. It has pointed bases with impressions and incisions (Fig. 4) (Vasilieva, Vybornov 2013). The 14C dating of different materials (such as food crusts, bones, pottery) from these sites dates the Elshanian ceramics to c. 8760–8000 calBP. The closest analogues to the typological and technological characteristics of Elshanian pottery were found on the eastern coast of the Caspian Sea and the Central Asian interfluves at the Uchaschy, Daryasay, and Dzhebel sites (Vybornov et al. 2012). Radiocarbon dates on the earliest Neolithic materials in Central Asia have the same age (Brunet et al. 2012). No sites in the Volga region of the steppe forest dating to 8350–8100 calBP have been found (Vybornov et al. 2010).

At the end of the 8th millennium BP, some Elshanian groups occupied the north-western Middle Volga region in the Sura River valley. The Vyuno Ozero I and Utuzh sites, the Ozimenky site in the Moksha River basin (Vybornov 2011), the Imerka 7 site, the Plautino I and IV sites in the south-western part of the middle Khoper River, the Ustie Izlegoshy site in the Upper Don region, and sites of the Karamishevo type (Ivnita and Karamishevo 5 and 9 sites; see Smolyaninov 2012) date to this period.

Because of the 8200 calBP climatic event the groups which produced the ‘Kairshak type’ pottery moved from the northern Caspian shore towards the steppe region of the Volga River basin and the northwestern coast of the Caspian. They influenced the development of the Varfolomeevka and Dzhangar traditions in these regions. The characteristics of the pottery, the ornamentation techniques, and motifs support this. The process of neolithisation on the north coast of the Caspian and the Lower Volga regions was embedded in the period c. 8500–7900 calBP (Vybornov et al. 2008b) (Fig. 1).

The climate in the steppe and forest steppe regions was more arid than today (Lavrushin, Spiridonova...
Fig. 3. Pottery from the Lower Volga region: 1–2 Kugat IV; 3 Kulagaisi; 4–5 Tu-Buzgu-Huduk I; 6–30 Kairshak (after Vybornov 2008).
The forest zone of Eastern Europe
In the forest zone of Eastern Europe generally only one component of the Neolithic was distributed, namely pottery, the characteristics of which allow us to make conclusions about the process of neolithisation in this part of Europe.

The forest steppe zone transformed into the forest zone only recently. There was steppe, with patches of forest inside river valleys. Naturally, in dry periods the forest zone with woodlands and rich food resources was a favourable area for people from more southerly regions (Arslanov et al. 2009; Vybornov 2011).

The forest zone of Eastern Europe
In the forest zone of Eastern Europe generally only one component of the Neolithic was distributed, namely pottery, the characteristics of which allow us to make conclusions about the process of neolithisation in this part of Europe.

The Dvina-Lovat River region
The detailed studies of artefact assemblages of the Dvina River Region allow us to distinguish several ceramic traditions that were defined as ‘ceramic phases’ (see Miklayev 1994).

Lakes in the Dvina-Lovat River region were mainly formed at the end of the Pleistocene – beginning of the Holocene within fluvioglacial and moraine depressions after the recession of the Late Würm stage ice-sheet. The further development of the lake system relates to the humid period, when most of them were transformed into peat-bogs in the Late Holocene (Davidova 1992). However, some authors (Miettinen 2002; Lak 1975) argue that the tectonic processes of the Fennoscandian shield had more influence on the development of the drainage network on the north-western Russian plateau and the water fluctuations in the lake basins than climatic changes during the Holocene.

At the beginning of the Holocene, the Serteya valley consisted of large and deep lakes with steep slopes. More than 38 early Neolithic sites have been found in this region (Fig. 1) (Mazurkevich et al. 2012). The Early Neolithic Serteya culture includes ceramic phases ‘a’, ‘b’, and ‘b–I’. Other cultural traditions comprise the ceramic phases ‘a–I’, ‘c–I’ and also ‘a–2’, and ‘b–2’ (Mazurkevich et al. 2008) (Fig. 5).

Ceramics from the ‘a–I’ phase (Fig. 5) were made from clay tempered with sand and grog. The coil technique was used to make the pottery, which consisted of small circular coils. Traces of scratching treatment were visible both on the outer and inner surfaces of vessels. There are sherds with smoothed and polished surfaces. Ceramics of this type has no decoration. The pots are open or straight, with small cambered flat edges, similar to a cylindrical form. This type of pottery has analogues with undecorated vessels from the lowest layers of the Rakushechny Yar site.

The radiocarbon date on food crust of ceramic type ‘a–I’ from Serteya XIV site falls within the interval between 9520–9270 calBP; due to the reservoir effect, this date is probably too old (δ13C in food crust is –33.8‰) (Fischer, Heinemeier 2003). Nevertheless, it falls into the earliest typological interval of ceramic tradition (see more detail in Mazurkevich et al. 2013). Due to the proposed correction based on modern sample dating (Kulkova et al. 2014) it can be attributed to the beginning of the 9th millennium calBP; the lowest cultural layers from the Rakushechny Yar site also match this date.

Another ceramic type relates to phase ‘a’ (Fig. 5). This type of pottery was formed from clay tempered with sand and grog, or from silt clay with organic inclusions without temper. The coil technique was used for moulding. The outer and inner surfaces were treated by scratching and then smoothed. This pottery was decorated with incisions and has analogues with ceramics from sites in the Low Volga River basin and in the Middle and Upper Don River basin.
The radiocarbon date of wood from the layer with ceramic type of phase ‘a’ is 8400–7760 calBP (Timo-feev et al. 2004) (Fig. 5). The age of the food crust on pottery from Rudnya Serteya site is 8990–8500 calBP. The cultural tradition represented by ceramic phase ‘a–2’, which is similar to Elshanian cultural traditions, can be dated to the same time. The ceramic tradition of local phase ‘b’ was formed on the base of ceramic phase ‘a’ between c. 8200–7900 calBP (Mazurkevich et al. 2013).

After c. 9450 calBP, the water level fell in the Serteya valley lakes. The regression minimum was dated to c. 8550 calBP. This was quite a warm period, but the climate remained dry. The bio-productivity of the lakes decreased. Data shows a decrease in population during this period (Mazurkevich et al. 2009). Palaeogeographical studies indicate that there was a short period of cooler and drier climate beginning at c. 8200 calBP, which coincided with the rapid regression of lakes in the Serteya valley due to tectonic processes in Fennoscandia and the transgression of the Baltic Sea. This caused an increase in the lake’s bio-productivity, as well as strengthening the anthropogenic influence on the lake system. The data provides evidence of population growth. Thus, the ‘a-1’ and ‘a’ phases of the Serteya tradition began earlier than 8200 calBP, and further pottery groups of the phases ‘a-2’ and ‘b’ were formed (Mazurkevich et al. 2012; Mazurkevich, Dolbunova 2012; Mazurkevich et al. 2013).

The Upper Volga River region
According to various studies (Krainov, Khotinsky 1977; Zel’tin 2008; Engovatova et al. 1998; Zaret’skaya, Kostyleva 2008), the Neolithic culture of the Upper Volga River went through several stages. Undecorated ceramics constitute an element in the first stage of the Upper Volga culture. The data obtained show that various typological and technological styles can be differentiated within the undecorated pottery. Because of the complicated cultural processes present in the Volga-Oka basin, it is probable that similar ceramic groups from other sites of the Upper Volga River basin varied in the same way.

The earliest ceramics were cylindrical shape or with a partly closed rim (Fig. 6a). Only a few fragments of this type have been found. Similar examples of this type can be found in the pottery assemblage...
from the Rakushechny Yar site, the Dvina River basin sites (ceramic phase ‘a-1’) and the Valday culture (‘type 1’). The radiocarbon dates of this type from the Zamostje 2 site obtained from the food crust on vessels fall into the long interval from 8600–7300 calBP (Meadows et al. 2015).

Another undecorated ceramic type from this collection is characterised by the use of coil stretching and molding with slabs. The clay paste contains shells. The outer and inner surfaces were treated by pebble smoothing and, as a result, coarse particles appear on the surface of the pottery walls (Fig. 6b). The shapes are either closed in the form of convergent cones or biconical. The radiocarbon dates of the food crusts on pottery fall into the period between 8200–7620 calBP (Meadows et al. 2015). This ceramic tradition is represented by different types of undecorated pottery which has analogues in assemblages from the Middle Volga River sites, the Valday site, and the Berezovaya Slobodka II-III site. The radiocarbon dates on the wood and charcoal from Berezovaya Slobodka II, III cultural layers with the finds of decorated and undecorated pottery fall into the interval between 8200–7980 calBP (Timofeev et al. 2004). Organic material (bone, peat) from layers containing Upper Volga pottery dated between 8200–7400 calBP (Lozovski 2003).

The Early Neolithic cultural layers containing the Upper Volga ceramics were found in the Mesolithic layers of the sites at Ivanovskoe 3, 7, Sahtish 2a, Stanovoe 4, Ozerki 5 and Zamostje 2 (Kostyleva 2003).

For the period from c. 8400–8100 calBP, some authors (Spiridonova, Aleshinskaya 1996; Aleshinskaya et al. 2001) have found the beginning of a reduction in water levels in the basin in this region on data from proxy indicators from peat-lake deposits. This process is connected with aridisation, mostly in the steppe and forest-steppe zones. Complete aridisation occurred at c. 8100 calBP, which the authors suggest marked the natural transition from the Mesolithic to Neolithic in central Russia.

The appearance of Neolithic traditions among Mesolithic hunter-gatherers can be connected with migration of Neolithic farmers. Environmental factors were probably among the causes: the transition from the Mesolithic to the Neolithic (at c. 8200 calBP) was characterised by complete aridisation not only in the steppe and forest-steppe zones, but also in the forest zones in Eastern Europe. These changes have been recorded in the pollen spectra for various parts of Eastern Europe (Spiridonova, Aleshinskaya 1999).

As noted by Elena Kostyleva (2003), migration did not include the whole population, but instead could have been in the form of small groups dispersing from the southern to northern regions.

Discussion and conclusion

At around 8200 calBP cold and dry climatic conditions were present in the Dvina-Lovat basin and the Upper Volga river region. These cold and dry conditions were an abrupt event that occurred in many areas of Eastern and Western Europe, as well as in the Middle East (Kofler et al. 2005; Magny 2003; Mayevsky et al. 2004, Aleshinskaya, Spiridonova 1999). A fall in river and lake water levels caused significant environmental transformations, provoking widespread migration (Mazurkevich et al. 2013). The high water level in the lakes of Dvina-Lovat basin, related to isostatic processes in the Baltic Sea, was one of the factors that attracted people in this area from the dry regions of the centre and south of the East European Plain (Kulkova et al. 2015).

The earliest Neolithic pottery appeared in the period from 9500 to 8950 calBP. This is the undecorated pottery found at various sites in Eastern Europe (Mazurkevich, Dolbunova 2012; Mazurkevich et al. 2013) including at Serteya XIV (Dniepr-Dvina region, phase ‘a-1’), Rakushechny Yar (Low Don River, bottom layers), and later, at the Zamostje 2 (Upper Volga region, types ‘4’ and ‘7’) sites.

In the period from 8950 to 8200 calBP, ceramics decorated with a retreating incised style have been found at North Caspian sites (Vibornov et al. 2012) (Kairshak III site, Kizilkhak, Varfolomeevka (layer 3), Kugat IV), in the Low Volga region, and in the Dnepr-Dvina basin (Rudnja Serteya, phase ‘a’). At almost the same time, c. 8200 calBP, the ceramic types ‘b’ and ‘a-2’ appeared in the Dvina-Lovat basin.

Pottery decorated with retreating incised style and with impressions in the period between 8200–7350 calBP was found at North Caspian sites and in the Low Volga region (including at sites such as Kairshak I and III, Djangar – layer 3, Varfolomeevka – layer 2B), in the Middle Volga region (II Sherbetskaya), the Dniepr-Dvina region (Serteya X – phase ‘a’), Upper Volga region (Sakhtrysh 2, Zamostie 2), Sukhona River region (Berezovaya Slobodka II-III), and other regions of Eastern Europe. During the period from 7950 to 7350 calBP, new types of undecorated pottery also appeared at several of these sites.
The radiocarbon dates show the very fast propagation of the pottery within groups of local Mesolithic people in Eastern Europe (Belanovskaya, Timofeev 2003). There is a ‘paradox of speed’ in the spread of pottery. Both the appearance of Neolithic traditions at primary sites and the spread of pottery to other regions occurred during a short time. The migrants bearing ceramic traditions probably moved along the main waterways of Eastern Europe in meridional directions. At the same time, the river currents in latitudinal directions became natural barriers to the distribution of earliest pottery traditions, according to the distribution of early Neolithic sites (Dolukhanov et al. 2009a). These sites where pottery traditions were newly established, ‘small islands of innovations’, were secondary centres from which ceramic traditions spread among local Mesolithic groups (during the second half of 9th and in the beginning of 8th millennium BP). The ceramic traditions remained the same for a long time and, therefore, pottery from different periods has very similar typological characteristics (Mazurkevich et al. 2006). A small population occupied ecological niches as poor soil fertility, long winters and abundant terrestrial and water food resources were features of most of Eastern Europe (Dolukhanov et al. 2009b).

The most drastic climatic changes connected with the global climatic fluctuations were reflected in the distribution of different cultural traditions. The main migrations were probably from regions with the worst environment, in which the biomass had
decreased, to regions with more favourable environmental conditions. Some evidence can be traced on the basis of the ceramic traditions at sites in the steppe, forest-steppe, and the forest zones of Eastern Europe. In the period of sharp climatic deterioration, ancient groups of people began to relocate. The density of population and settlements of different groups of people increased in certain micro-regions, as a rule with a more favourable environment. The most cold and dry climatic event occurred c. 8200 calBP, which influenced the reduction of water and food resources in the steppe and forest-steppe zones of Eastern Europe. In the forest zone, these changes were less clear. The transgressions in the Baltic Sea and inner lake basins connected by a hydrological network in regions such as the Dvina-Lovat basin, which were rich in natural resources, were one of the causes that attracted people in this period. Groups with different cultural traditions interacted, and exchanged experience and technologies. These groups arrived in several places in Eastern Europe. Different stylistic types of pottery dated to the same period can be found at one site. We can suggest that people of different cultures occupied the most favourable places at the same time during the period of climatic deterioration, for example, in the migration from the steppe and forest steppe zones to the forest zone.

The analysis allows us to consider impulses in the development of human groups in the period of the climatic cold event at 8200 calBP. In the drastic cooling and arid event population density was redistributed, and settlements were consolidated in places favourable for survival. The appearance of ceramic traditions among Mesolithic groups in Eastern Europe illustrates this event: this was a distribution of technology from less favourable to more favourable places. The ‘primary centres’ of neolithisation emerged in the Eastern Europe territory before the climatic cold event, but the appearance of pottery tradi-

Acknowledgements

This study is supported by the Russian Found for Basic Research (RFBR), projects – 13-06-12057-ofi-m, 11-06-00090-a.

References

Bassetti M., Cusinato A., Dalmeri G., Hrozny Kompatscher M. and Wierer U. 2009. Updating on the Final Palaeoli-

Belanovskaya T. D. 1995. *Iz drevneishego proshlago Nizhnego Podonja: Poseleienie tremeni neolita-eneolita Rusakshchyn Yar (From the most ancient of past of the Low Don River region: the settlement Rusakshchyn Yar of Neolithic-Eneolithic period).* St. Petersburg University. Saint Petersburg. (in Russian)

Dolukhanov P. M., Mazurkevich A. M. and Shukurov A. M. 2009b. Early pottery makers in Eastern Europe: cen-

Lamy F., Kilian R., Arz H. W., Francois J. P., Kaiser J., Prange M. and Steinke T. 2010. Holocene changes in the posi-

Lavrushin Yu. A., Spiridonova E. A. 1995. Resultati paleo-

Levkovskaya G. M. 1995. *Zakluchenie po rezultatam sporovo-pilzivogo analiza obrazov iz razrezov stoyanok iva-

Lozovski V. M. 2003. Perehod ot lesnogo mezolita k les-

nomu neolitu v Volgo-Okskom mezhdurechie (po mater-

rialam stoyanki Zamostie 2). *Neolit-Eneolit yuga i neolit severa Vostochnoi Evropi*. Noye materiali, islesdovaniya, problemy neolitizacii regionov. Rossiyskaya Akade-

Magny M., Begeot C., Guiot J. and Peyron O. 2003. Con-

trasting patterns of hydrological changes in Europe in re-

sponse to Holocene climate cooling phases. *Quaternary Science Reviews* 22: 1589–1596.

Mamonov A. E. 2006. Prirodnaya sreda v rannem neolite Samarskogo Zavolzhya i Orenburgskogo Priuralay i adapt-

tazionnii aspekt izucheniya Elshanskoy kulturi. In *Archa-

eologicheskoe izuchenie Zentralnoy Rossii*. LGPU. Li-

pezk: 93–95. (in Russian)

ture Russian academy of Science (ed.), *Materials of In-

ternational conference “Man and Environment in Pleis-

tocene and Holocene: Evolution of Waterways and Early Settlement of Northern Europe”*. Russian Academy of Sci-

ces. Institute of the History of Material Culture. St. Pe-

tersburg: 20.

Mazurkevich A. N., Kulkova M. A. and Dolbunova E. V. 2008. Osobennosti izgotovlenija ranneneoliticheskoy ker-

amiki v Lovatsko-Dvinskom mezhdurechie. *Acta Archa-

eologica Albaruthenica* 8: 139–160. (in Russian)

Mazurkevich A. N., Korotkevich B. N., Dolukhanov P. M., Shukurov A. M., Arslanov Kh. A., Savel’eva L. A., Dzino-

Mazurkevich A. N., Dolbunova E. V. 2012. The most an-

Meadows J., Losovski V. M., Lozovskaya O. V., Lubke H., Zaitceva G. I. and Kulkova M. A. 2015. Place of Zamostje 2 site pottery assemblage within the overall chronology of upper Volga-type pottery. In the Institute for History of Material Culture Russian academy of Science (ed.), *Neo-

thic cultures of Eastern Europe: Chronology, Paleoe-

cology and cultural traditions*. Materials of the Interna-

tional Conference, dedicated to the 75th anniversary of Vic-

tor Petrovich Tretjakov, May, 12–16, 2015. Russian Aca-

demy of Sciences. Institute of the History of Material Cul-

Migowski C., Stein M., Prasad S., Negendank J. F. W. and Agn0 A. 2006. Holocene climate variability and cultural

